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Desynchronization in coupled systems with quasiperiodic driving

T. E. Vadivasova, O. V. Sosnovtseva, A. G. Balanov, and V. V. Astakhov
Physics Department, Saratov State University, Astrakhanskaya Street 83, Saratov 410026, Russia

~Received 18 June 1999; revised manuscript received 3 November 1999!

We describe the development of coexisting attractors in coupled quasiperiodically forced maps. The process
of loss of complete synchronization in the systems, which individually demonstrates strange nonchaotic be-
havior, is studied. With this process, the complex structure of the basin of attraction is observed.

PACS number~s!: 05.45.2a
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The interaction between coupled chaotic oscillations
produce a number of different bifurcational phenome
Coupled units following the period-doubling route to cha
exhibit a hierarchy of bifurcations in which different familie
of attractors emerge@1–3# and the nested structure of th
synchronization region is observed@4#.

For interacting chaotic oscillators provided that they a
identical, complete~full ! synchronization can take plac
@5–7#. That is, when the coupling is appropriate oscillatio
of the systems coincide completelyx1(t)5x2(t) ~i.e., sys-
tems oscillate in phase!. The transition to nonsynchronou
behavior in systems with the symmetric invariant manifo
is associated with a variety of new phenomena including
riddled basin of attraction@8# and on-off intermittency@9#.
The loss of complete chaotic synchronization is directly
lated to bifurcations of saddle periodic orbits embedded i
chaotic attractor@10#.

In recent years, evidence for the occurrence in quasip
odically forced systems~i.e., forced by the signal with two
incommensurate frequencies! of a strange nonchaotic attrac
tor ~SNA! has accumulated@11–19#. The SNA is character-
ized by the fractal structure, but the exponential diverge
of trajectories does not appear. Recently, in@18# it has been
shown that the loss of the transverse stability of an ergo
torus in a certain class of systems with the invariant manif
can lead to strange nonchaotic behavior. This transition
accompanied by blowout bifurcation and on-off interm
tency. Ramaswamy@20# has found that quasiperiodicall
driven systems in a regime of a SNA can be fully synch
nized.

In this Brief Report we investigate how a quasiperiod
forcing affects the destruction of the complete synchroni
tion. We demonstrate that the regime of an ‘‘in-phase’’ sy
chronous SNA can be destabilized with the formation o
riddledlike structure of the basin of attraction.

The model of coupled logistic maps under an identi
quasiperiodic forcing applied to each system, is given by

xn115«2xn
21g~xn

22yn
2!1a0 cos 2pzn ,

yn115«2yn
21g~yn

22xn
2!1pa0 cos 2pzn , ~1!

zn115zn1W, mod 1,

where x, y are dynamical variables,z is the phase of the
external force withW50.5(A521) irrational, « represents
the nonlinearity parameter,g governs the coupling strength
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a0 is the forcing amplitude in the first system, whilep deter-
mines an amplitude mismatch of the interacting systems

The unforced coupled logistic maps, which individual
follow the period-doubling route to chaos, demonstrate
universal scenario of the development of periodic and c
otic coexisting regimes@2#. When an identical (p51) qua-
siperiodic forcing is applied, a few notable effects are rec
nized: ~i! it transforms the periodic attractors int
quasiperiodic ones;~ii ! it truncates the period-doubling cas
cade and provides a transition to the SNA, and~iii ! it reduces
a number of coexisting attractors and leads to the destruc
of multistability as the external amplitude increases. F
small forcing amplitude and at fixed parametersg50.002
and «51.2, two families of attractors are observed: ‘‘in
phase’’ attractors, which are located in the invariant su
space defined by the conditionx5y, and ‘‘out-of-phase’’
attractors with the self-symmetryx↔y. At a050.1, quasi-
periodic attractors of two families coexist in the phase sp
of the system. With increasing amplitudea0, the truncated
torus-doubling cascade takes place for both families. Va
tion of control parameters leads to the transition to the SN

The appearance of the ‘‘in-phase’’ strange nonchaotic
tractor SNA0 occurs ata0'0.1185 when a period-double
torus collapses with its unstable parent torus@13#. As a col-
lision is approached, the torus becomes wrinkled, ultimat
getting a fractal structure at the collision. The ‘‘out-o
phase’’ strange nonchaotic attractor SNA1 with two bands
arises ata0'0.1182 via a gradual fractalization of th
doubled torus as described in@15–17#. The strangeness o

FIG. 1. xy projection of ‘‘in-phase’’ and ‘‘out-of-phase’’
strange nonchaotic attractors (SNA0 and SNA1, respectively! that
coexist ata050.1186,p51.0.
4618 © 2000 The American Physical Society
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FIG. 2. Evolution of Lyapunov exponents vs the amplitude of the external forcing:~a! the largest Lyapunov exponent for two coexistin
regimes and for the perturbated ‘‘in-phase’’ attractor;~b! the largest and transverse Lyapunov exponents for the ‘‘in-phase’’ reg
Perturbations are introduced asp51.0001.
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both attractors is diagnosed via criteria suggested by
ovsky and Feudel@14#. The largest nonzero Lyapunov exp
nent for these attractors remains negative. Observed S
coexist within a certain range of the control parametera0

P@0.1185;0.1189# ~Fig. 1!.
Bifurcational transitions described above are easily dis

guished by the calculation of the Lyapunov exponents a
function of the control parameter~Fig. 2!. Stability of the
‘‘in-phase’’ regime is diagnosed with the help of the tran
versal Lyapunov exponent@10,11#:
k-

As

-
a

-

l tr5 lim
n→`

1

n
lnU)

i 50

n21

f u~ui ,v i !U
u050

, ~2!

where u5y2x, v5y1x are normalized variables,f u
5] f /]u. For the system~1!, f (u,v)5(2g21)uv. To check
the robustness of the ‘‘in-phase’’ regime, a small noniden
of the partial systems is introduced. The ‘‘in-phase’’ regim
of the SNA is shown to be structurally unstable to transve
perturbations. At the weak forcing mismatchp51.0001, af-
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FIG. 3. ~a! The stroboscopic section (z50) of attractors and
their basins ata050.1186. White color marks the basin of the ‘‘in
phase’’ state, while gray color indicates the basin of attraction
the ‘‘out-of-phase’’ attractor. Black dots belong to the ‘‘in-phase
regime.

FIG. 4. The local transversal exponents vs the time of calc
tion for the quasiperiodic ‘‘in-phase’’ regime ata050.1184~curve
1! and for the strange nonchaotic set ata050.1186~curve 2!.
ter long transient time phase trajectories leave the invar
manifold to an ‘‘out-of-phase’’ regime@point 1 in Fig. 2~a!#.
Figure 3 represents the stroboscopic section of the basin
two coexisting strange nonchaotic attractors SNA0 and
SNA1. It is clearly seen@Fig. 3~b!# that in a small vicinity of
‘‘in-phase’’ strange nonchaotic trajectories~because of finite
time of calculation only a few points that belong to th
attractor are indicated in Fig. 3~b! but it is known that the
phase trajectories of a strange nonchaotic attractor
packed fully with nonuniform density@12#!, there are a set o
initial conditions starting from which trajectories will leav
the neighborhood of the invariant manifold, approach
‘‘out-of-phase’’ regime, and finally be attracted to it. Th
basin of the ‘‘in-phase’’ solution~white color in Fig. 3! is
riddled by holes that are related to the basin of another
tractor~gray color in Fig. 3!. Therefore, the ‘‘in-phase’’ SNA
appears to be a Milnor attractor@10,11,21#.

Trajectories lying in the invariant subspace lose th
transverse stability step by step. This process is character
by the local transversal Lyapunov exponent, i.e., the tra
versal exponent that is calculated over a limit time inter
~Fig. 4!. One can see that in the case of the SNA~curve 2!,
trajectories suffer the local transversal instability during
essential larger number of iterations.

At a0'0.1189, the ‘‘out-of-phase’’ attractor loses its st
bility @point 2 in Fig. 2~a!#. After a long transient period, a

f

-

FIG. 5. On-off intermittency.~a! The phase portrait and~b! time
series (a050.1190,p51.0001).
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phase trajectory switches onto an ‘‘in-phase’’ regime, be
a single attractive set in the phase space of the system
weak forcing mismatch leads to on-off intermittency~Fig. 5!
between two sets~the largest Lyapunov exponent oscillat
around zero level! up toa0'0.130 when an ‘‘in-phase’’ cha
otic attractor appears@point 3 in Fig. 2~b!#. When the control
parameter is slightly changed, the transverse Lyapunov
ponent passes through zero from the negative side@point 4 in
Fig. 2~b!#. This bifurcation is referred to as blowout bifurca
tion @8,19#. It is accompanied by the intermittency even wit
out any perturbations and leads to the formation of a mer
chaotic attractor including trajectories from ‘‘in-phase’’ an
‘‘out-of-phase’’ sets.

In summary, we have studied peculiarities of the inter
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tion of quasiperiodically driven systems with the SNA
When a control parameter is varied, the system underg
several transitions where the loss of complete synchron
tion for a strange nonchaotic regime is associated with
transverse destabilization, the appearance of a riddled
structure in the basin of the attraction, and on-off interm
tency. The bifurcation mechanism of the formation of suc
structure for the SNA seems to be different from the kno
mechanism for a fully synchronized chaotic attractor, wh
we leave for further investigation.
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98-02-16531!. T.V. acknowledges support from ISSE
~Grant No. D99-835!.
ni,

ky,

va,
@1# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!.
@2# V.V. Astakhov, B.P. Bezruchko, E.N. Erastova, and E

Seleznev, J. Tekh. Fiz.60, 19 ~1990! @Sov. Phys. Tech. Phys
35, 1122~1990!#.

@3# V.S. Anishchenko, V.V. Astakhov, T.E. Vadivasova, O.V
Sosnovtseva, C.W. Wu, and L.O. Chua, Int. J. Bifurcati
Chaos Appl. Sci. Eng.5, 1677~1995!.

@4# D.E. Postnov, T.E. Vadivasova, O.V. Sosnovtseva, A.G. B
anov, V.S. Anishchenko, and E. Mosekilde, Chaos9, 227
~1999!.

@5# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!.
@6# L.M. Pecora and T.L. Carroll, Phys. Rev. Lett.64, 821~1990!.
@7# A. Pikovsky, Z. Phys. B: Condens. Matter55, 149 ~1984!.
@8# J.C. Alexander, J.A. Yorke, Z. You, and I. Kan, Int. J. Bifu

cation Chaos Appl. Sci. Eng.2, 795 ~1992!; J.C. Alexander,
B.R. Hunt, J. Kan, and J.A. Yorke, Ergod. Theory Dyn. Sy
16, 651 ~1996!; J.C. Sommerer and E. Ott, Nature~London!
365, 136~1993!; E. Ott and J.C. Sommerer, Phys. Lett. A188,
39 ~1994!.

@9# N. Platt, E.A. Spiegel, and C. Tresser, Phys. Rev. Lett.70, 279
.

l-

.

~1993!.
@10# A.S. Pikovsky and P. Grassberger, J. Phys. A24, 4587~1991!;

Y.-C. Lai, C. Grebogi, J.A. Yorke, and S.C. Venkatarama
Phys. Rev. Lett.77, 55 ~1996!; N.F. Rulkov and M.M. Sus-
chik, Phys. Lett. A214, 145 ~1996!.

@11# C. Grebogi, E. Ott, S. Pelikan, and J.A. Yorke, Physica D13,
261 ~1984!.

@12# M. Ding, C. Grebogi, and E. Ott, Phys. Rev. A39, 2593
~1989!.

@13# J.F. Heagy and S.M. Hammel, Physica D70, 140 ~1994!.
@14# A.S. Pikovsky and U. Feudel, Chaos5, 253 ~1995!.
@15# K. Kaneko, Prog. Theor. Phys.69, 1806~1983!.
@16# O.V. Sosnovtseva, U. Feudel, J. Kurths, and A.P. Pikovs

Phys. Lett. A218, 255 ~1996!.
@17# V.S. Anishchenko, T.E. Vadivasova, and O.V. Sosnovtse

Phys. Rev. E53, 4451~1996!.
@18# T. Yalcinkaya and Y.C. Lai, Phys. Rev. E56, 1623~1997!.
@19# Y.-C. Lai and C. Grebogi, Phys. Rev. E52, R3313~1995!.
@20# R. Ramaswamy, Phys. Rev. E56, 7294~1997!.
@21# J. Milnor, Commun. Math. Phys.99, 177 ~1985!.


