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Desynchronization in coupled systems with quasiperiodic driving
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We describe the development of coexisting attractors in coupled quasiperiodically forced maps. The process
of loss of complete synchronization in the systems, which individually demonstrates strange nonchaotic be-
havior, is studied. With this process, the complex structure of the basin of attraction is observed.

PACS numbd(s): 05.45-a

The interaction between coupled chaotic oscillations cam, is the forcing amplitude in the first system, whjeleter-
produce a number of different bifurcational phenomenamines an amplitude mismatch of the interacting systems.
Coupled units following the period-doubling route to chaos The unforced coupled logistic maps, which individually
exhibit a hierarchy of bifurcations in which different families tg|1ow the period-doubling route to chaos, demonstrate the
of attractors emerggl-3] and the nested structure of the ypjyersal scenario of the development of periodic and cha-
synchronization region is observéd. _ otic coexisting regime§2]. When an identical g=1) qua-
_For interacting chaotic oscillators provided that they aresiperiodic forcing is applied, a few notable effects are recog-
identical, complete(full) synchronization can take place pized: (i) it transforms the periodic attractors into
[5-7]. That is, when the coupling is appropriate oscillationsqyasiperiodic onesii) it truncates the period-doubling cas-
of the systems coincide completeky(t) =x,(t) (i.e., sys-  cade and provides a transition to the SNA, 4iid it reduces
tems oscillate in phageThe transition to nonsynchronous g number of coexisting attractors and leads to the destruction
behavior in systems with the symmetric invariant manifoldsyf muyltistability as the external amplitude increases. For
is associated with a variety of new phenomena including thema)| forcing amplitude and at fixed parameters 0.002
riddled basin of attractiofi8] and on-off intermittency9].  5nq e=1.2, two families of attractors are observed: “in-
The loss of complete chaotic synchronization is directly €phase” attractors, which are located in the invariant sub-
lated to bifurcations of saddle periodic orbits embedded in Rpace defined by the condition=y, and “out-of-phase”
chaotic attractof10]. , _attractors with the self-symmetny—y. At ag=0.1, quasi-

In recent years, evidence for the occurrence in quasiperiseriodic attractors of two families coexist in the phase space
odically forced systemsi.e., forced by the signal with two ¢ the system. With increasing amplitude, the truncated
incommensurate frequencjesf a strange nonchaotic attrac- 14rs-doubling cascade takes place for both families. Varia-
tor (SNA) has accumulatefil1-19. The SNA is character- ion of control parameters leads to the transition to the SNA.
ized by the fractal structure, but the exponential divergence e appearance of the “in-phase” strange nonchaotic at-
of trajectories does not appear. Recently[i6] it has been oo, SNA, occurs ata,~0.1185 when a period-doubled
shown that the loss of the transverse stability of an ergodig, collapses with its unstable parent tofig]. As a col-

torus in a certain class of systems with the invariant manifoldigjo, is approached, the torus becomes wrinkled, ultimately
can lead to strange nonchaotic behavior. This transition 'Betting a fractal structure at the collision. The “out-of-

accompanied by blowout bifurcation and on-off intermit-
tency. Ramaswamy20] has found that quasiperiodically
driven systems in a regime of a SNA can be fully synchro
nized.
In this Brief Report we investigate how a quasiperiodic
forcing affects the destruction of the complete synchroniza- 1.7
tion. We demonstrate that the regime of an “in-phase” syn-
chronous SNA can be destabilized with the formation of a
riddledlike structure of the basin of attraction. 0.9
The model of coupled logistic maps under an identical
guasiperiodic forcing applied to each system, is given by y

phase” strange nonchaotic attractor SN#ith two bands
arises atay~0.1182 via a gradual fractalization of the
“doubled torus as described [t5-17. The strangeness of

Xn+1=8 = Xp+ ¥(Xp—Yp) +29 COS 217, 0.1

Yni1=&—Yat y(Ya—X3)+pag cos 27z, (1)

-0.7
-0.7 0.1

Zns1=2Z, W, mod 1, 1.7

Where X, y are dynam'cal Val’lab|e$ |S the phase Of the FIG. 1. Xy projection of “in_phase” and “out_of-phase”

external force withw=0.5(/5—1) irrational, & represents strange nonchaotic attractors (SNAnd SNA, respectively that
the nonlinearity parametef; governs the coupling strength, coexist ata,=0.1186,p=1.0.
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FIG. 2. Evolution of Lyapunov exponents vs the amplitude of the external for@hthe largest Lyapunov exponent for two coexisting
regimes and for the perturbated “in-phase” attract@) the largest and transverse Lyapunov exponents for the “in-phase” regime.
Perturbations are introduced ps-1.0001.
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)

both attractors is diagnosed via criteria suggested by Pik-

ovsky and Feuddl14]. The largest nonzero Lyapunov expo- A= lim ﬁln

nent for these attractors remains negative. Observed SNAs n—e

coexist within a certain range of the control parametgr

€[0.1185;0.1189 (Fig. 1). where u=y—x, v=y+x are normalized variablesf,
Bifurcational transitions described above are easily distin= 5f/u. For the systen(l), f(u,v)=(2y—1)uv. To check

guished by the calculation of the Lyapunov exponents as ée robustness of the “in-phase” regime, a small nonidentity

function of the control parametdFig. 2). Stability of the  of the partial systems is introduced. The “in-phase” regime

“in-phase” regime is diagnosed with the help of the trans-of the SNA is shown to be structurally unstable to transverse

versal Lyapunov exponefi0,11]: perturbations. At the weak forcing mismatpks 1.0001, af-
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FIG. 3. (a) The stroboscopic sectiore€£0) of attractors and
their basins at;=0.1186. White color marks the basin of the “in-
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FIG. 5. On-off intermittency(a) The phase portrait and) time
series §,=0.1190,p=1.0001).

phase” state, while gray color indicates the basin of attraction ofter IC_mg transient time phase trajgctorigs Iea_lve _the invariant
the “out-of-phase” attractor. Black dots belong to the “in-phase” manifold to an “out-of-phase” regimgpoint 1 in Fig. 2a)].

regime.
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Figure 3 represents the stroboscopic section of the basins of
two coexisting strange nonchaotic attractors Nand
SNA;. Itis clearly seeriFig. 3(b)] that in a small vicinity of
“in-phase” strange nonchaotic trajectoridsecause of finite
time of calculation only a few points that belong to this
attractor are indicated in Fig.(® but it is known that the
phase trajectories of a strange nonchaotic attractor are
packed fully with nonuniform density12]), there are a set of
initial conditions starting from which trajectories will leave
the neighborhood of the invariant manifold, approach an
“out-of-phase” regime, and finally be attracted to it. The
basin of the “in-phase” solutioriwhite color in Fig. 3 is
riddled by holes that are related to the basin of another at-
tractor(gray color in Fig. 3. Therefore, the “in-phase” SNA
appears to be a Milnor attractfit0,11,2].

Trajectories lying in the invariant subspace lose their
transverse stability step by step. This process is characterized
by the local transversal Lyapunov exponent, i.e., the trans-
versal exponent that is calculated over a limit time interval
(Fig. 4). One can see that in the case of the S{¢Arve 2,
trajectories suffer the local transversal instability during an

FIG. 4. The local transversal exponents vs the time of calculaessential larger number of iterations.

tion for the quasiperiodic “in-phase” regime ay=0.1184(curve

1) and for the strange nonchaotic setagt=0.1186(curve 2.

At ay~0.1189, the “out-of-phase” attractor loses its sta-
bility [point 2 in Fig. Za)]. After a long transient period, a
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phase trajectory switches onto an “in-phase” regime, beingion of quasiperiodically driven systems with the SNA.

a single attractive set in the phase space of the system. When a control parameter is varied, the system undergoes
weak forcing mismatch leads to on-off intermitten@yg. 5  several transitions where the loss of complete synchroniza-
between two setéthe largest Lyapunov exponent oscillates tion for a strange nonchaotic regime is associated with the
around zero levglup toay~0.130 when an “in-phase” cha- transverse destabilization, the appearance of a riddledlike
otic attractor appeaipoint 3 in Fig. 2b)]. When the control  structure in the basin of the attraction, and on-off intermit-
parameter is slightly changed, the transverse Lyapunov efency. The bifurcation mechanism of the formation of such a
ponent passes through zero from the negative[gidmt 4 in  gyycture for the SNA seems to be different from the known

Fig. 2b)]. This bifurcation is referred to as blowout bifurca- e chanism for a fully synchronized chaotic attractor, which
tion[8,19]. It is accompanied by the intermittency even with- ‘(’j’e leave for further investigation.

out any perturbations and leads to the formation of a merge

chaotic attractor including trajectories from “in-phase” and This work was supported in part by RFFGrant No.

“out-of-phase” sets. 98-02-1653). T.V. acknowledges support from ISSEP
In summary, we have studied peculiarities of the interac{Grant No. D99-83h
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